A Borcherds–Kac–Moody Superalgebra with Conway Symmetry

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superalgebra and fermion-boson symmetry

Fermions and bosons are quite different kinds of particles, but it is possible to unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra. In this article we discuss the development of the concept of symmetry, starting from the rotational symmetry and finally arriving at this fermion-boson (FB) symmetry.

متن کامل

Lie Superalgebra Valued Self-Dual Yang-Mills Fields and Symmetry Reduction

Self-dual Yang-Mills fields with values in a Lie superalgebra on the four-dimensional Euclidean space and pseudo-Euclidean space of signature (2,2) can be reduced by subgroups of the corresponding conformal group to integrable systems with anticommuting degrees of freedom. Examples of reductions are presented.

متن کامل

Lie Superalgebra and Extended Topological Conformal Symmetry in Non - critical W 3 Strings

We obtain a new free field realization of N = 2 super W3 algebra using the technique of quantum hamiltonian reduction. The construction is based on a particular choice of the simple root system of the affine Lie superalgebra sl(3|2)(1) associated with a non-standard sl(2) embedding. After twisting and a similarity transformation, this W algebra can be identified as the extended topological conf...

متن کامل

Conway and iteration hemirings

Conway hemirings are Conway semirings without a multiplicative unit. We also define iteration hemirings as Conway hemirings satisfying certain identities associated with the finite groups. Iteration hemirings are iteration semirings without a multiplicative unit. We provide an analysis of the relationship between Conway hemirings and (partial) Conway semirings and describe several free construc...

متن کامل

A Factorization of the Conway Polynomial

It is tempting to conjecture that there is some interesting relationship between the Conway polynomial ∇L(z) of a link L and ∇K(z), where K is a knot obtained by banding together the components of L. Obviously they cannot be equal since only terms of even or odd degree appear in ∇L(z), according to whether L has an odd or even number of components. Moreover there are many ways of choosing bands...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2019

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-019-03518-0